ATRA transcriptionally induces nSMase2 through CBP/p300-mediated histone acetylation.

نویسندگان

  • Christopher J Clarke
  • Achraf A Shamseddine
  • Joseph J Jacob
  • Gabrielle Khalife
  • Tara A Burns
  • Yusuf A Hannun
چکیده

Neutral sphingomyelinase-2 (nSMase2) is a key ceramide-producing enzyme in cellular stress responses. While many posttranslational regulators of nSMase2 are known, emerging evidence suggests a more protracted regulation of nSMase2 at the transcriptional level. Previously, we reported that nSMase2 is induced by all-trans retinoic acid (ATRA) in MCF7 cells and implicated nSMase2 in ATRA-induced growth arrest. Here, we further investigated how ATRA regulates nSMase2. We find that ATRA regulates nSMase2 transcriptionally through the retinoic acid receptor-α, but this is independent of previously identified transcriptional regulators of nSMase2 (Sp1, Sp3, Runx2) and is not through increased promoter activity. Epigenetically, the nSMase2 gene is not repressively methylated in MCF7 cells. However, inhibition of histone deacetylases (HDACs) with trichostatin A (TSA) induced nSMase2 comparably to ATRA; furthermore, combined ATRA and TSA treatment was not additive, suggesting ATRA regulates nSMase2 through direct modulation of histone acetylation. Confirming this, the histone acetyltransferases CREB-binding protein and p300 were required for ATRA induction of nSMase2. Finally, use of class-specific HDAC inhibitors suggested that HDAC4 and/or HDAC5 are negative regulators of nSMase2 expression. Collectively, these results identify a novel pathway of nSMase2 regulation and suggest that physiological or pharmacological modulation of histone acetylation can directly affect nSMase2 levels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct Roles for CBP and p300 on the RA-Mediated Expression of the Meiosis Commitment Gene Stra8 in Mouse Embryonic Stem Cells

In mammalian germ cells, meiotic commitment requires the expression of Stimulated by retinoic acid gene 8 (Stra8), which is transcriptionally activated by retinoic acid (RA). However, little is known about the epigenetic mechanism by which RA induces Stra8 expression. Utilizing a chromatin immunoprecipitation assay (ChIP), we showed that RA increases histone acetylation at the Stra8 promoter in...

متن کامل

CBP and p300 Histone Acetyltransferases Contribute to Homologous Recombination by Transcriptionally Activating the BRCA1 and RAD51 Genes

Histone acetylation at DNA double-strand break (DSB) sites by CBP and p300 histone acetyltransferases (HATs) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that CBP and p300 HATs also function in DSB repair by transcriptionally activating the BRCA1 and RAD51 genes, which are involved in homologous recombination (HR), a major DSB repair system. siRNA-mediated ...

متن کامل

Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation.

Histone acetyltransferases (HATs) GCN5 and PCAF (GCN5/PCAF) and CBP and p300 (CBP/p300) are transcription co-activators. However, how these two distinct families of HATs regulate gene activation remains unclear. Here, we show deletion of GCN5/PCAF in cells specifically and dramatically reduces acetylation on histone H3K9 (H3K9ac) while deletion of CBP/p300 specifically and dramatically reduces ...

متن کامل

DUX4 recruits p300/CBP through its C-terminus and induces global H3K27 acetylation changes

Ectopic expression of the double homeodomain transcription factor DUX4 causes facioscapulohumeral muscular dystrophy (FSHD). Mechanisms of action of DUX4 are currently unknown. Using immortalized human myoblasts with a titratable DUX4 transgene, we identify by mass spectrometry an interaction between the DUX4 C-terminus and the histone acetyltransferases p300/CBP. Chromatin immunoprecipitation ...

متن کامل

Is histone acetylation the most important physiological function for CBP and p300?

Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations caus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2016